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Abstract 
Starting from the old idea that Fermi statistics for quarks play a fundamental 

role to explain some features of hadron structure, we study the modification of 
the scaling behaviour of parton distributions due to quantum statistical effects. 
In particular, by following an interesting formal analogy which holds between the 
Altarelli-Parisi evolution equations, in leading-log approximation, and a set of 
Boltzmann equations, we generalize the evolution equations to take into account 
Pauli exclusion principle and gluon induced emission. 
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Deep inelastic experiments seem to be an inexhaustible source of information on the 
hadronic structure and continue to considerably improve our understanding of strong 
interaction dynamics. A measurement of proton and neutron F.(X) structure function 
performed by the NMC Collaboration at CERN [l] suggests a rather large SU(2) flavour 
breaking in the sea quark [2]. In particular they have obtained a determination, at very 
small Z, for the difference 

G(z) = jr1 +‘Y(Y) - G’“(Y)] = ; l1 & [U(Y) + a(y) - d(y) - (a(y)] > (1) 

finding Z~(O.004) = 0.227 f 0.007 Thus, by extrapolating down to z = 0, they have 
estimated 

&(O) = 0.240 f 0.016 (2) 

This result represents a relevant violation of the Gottfried sum rule [3], which would 
predict &(O) = l/3. Moreover, from (2) we get 

d--tic 
I 

’ dz [d(z) - G(z)] N 0.14 
0 (3) 

However, the inequality d > 21 was already argued many years ago by Field and Feyn- 
man [4] on pure statistical basis. They suggested that in the proton the production 
from gluon decays of uii-pairs with respect to d&pairs would be suppressed by Pauli 
principle because of the presence of two valence u quarks but of only one valence d 
quark. Assuming this point of view, the experimental result (2) naturally leads to the 
conclusion that quantum statistical effects play a sensible role in parton dynamics and 
that, in particular, parton distribution functions are affected by them. In this picture 
one may also easily account for the known dominance at high I of v-quarks over d- 
quarks, whose characteristic signature is the fast decreasing of the ratio F$‘(z)/F!(z) 
in this regime. 

In recent papers [5] this idea has been developed, succeeding in making reasonable 
assumptions for various polarized parton distributions in terms of unpolarized ones, 
explaining the observed violation of Ellis-Jaffe sum rule [S], and giving a possible 
solution to the spin crisis problem (71. Finally, using Fermi-Dira.c or Bose-Einstein 
inspired form for parton distribution functions, a rather good agreement has been 
obtained with the experimental data on structure functions [8]. 

The aim of this letter is to study the role of quantum statistical effects, namely 
Pauli exclusion principle and induced gluon emission, in the Qz-evolution of parton 
distributions. We will show that there is a quite close analogy between the well-known 
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Altarelli-Parisi (A-P) evolution equations [9], in leading-log approximation, and a set 
of Boltzmann equations written for a dilute system of particles. This analogy will guide 
us in finding the generalized scaling when also quantum statistics have been taken into 
account. 

As well-known, the logarithmic dependence on Q* of the parton distribution mo- 
menta, predicted in the framework of perturbative QCD, has a simple and beautiful 
interpretation in terms of evolution equations for parton distribution functions. At 
leading-log level, the A-P equations can be written in the following way 

&Cx.t) = gq’ ~~Pa(Y,t)Paa (;) > 
where t = ln(Q’/p*), p is some renormalization scale and pa(z,t) denote the parton 
distribution functions (A, B =quarks, antiquarks and gluons). By defining 

with b = (33 - 2nf)/(12n) (nf is the number of flavours), Eq. (4) becomes 

d ;i;P”(“> 4 = l1 : pJB(Y, T)PAB (f) 

Note that the dependence on T of r.h.s. of (6) comes only through p~(y, r). 
In Eqs. (4) and (6), P.de(z/y) stand for the splitting functions evaluated by using 
standard equivalent parton method. They correspond to the probability for the ele- 
mentary three-body processes to occur in which a parton with momentum fraction z 
is produced by a parton with higher fraction y = x/z. 

The simple microscopical interpretation of Eq. (6) is, as well-known, that the 
r dependence of pi distributions is induced by these processes considering them as 
occurring in the vacuum. 
However, it is physically reasonable to imagine that this picture has to be modified for 
sufficiently low .z; in this regime the nucleons are filled with a large number of quark- 
antiquark pairs and gluons (the sea) and thus, to take into account in the correct 
way the presence of this large number of partons, the decays A -+ B + C should 
be considered in presence of a surrounding plasma of both Fermi and Bose particles, 
Corrections induced by quantum statistical effects to the scaling behaviour dictated by 
(6) are therefore generally present, and in particular we expect that: 
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a) Pauli blocking will suppress the production of quarks and antiquarks with fraction 
z corresponding to filled levels; 

b) the gluon emission probability through bremsstrahlung processes, considered in 
the standard picture leading to A-P equations, will be enhanced by the contri- 
bution of induced-emission in presence of a rather relevant number of gluons in 
the sea. 

These effects would favour the production of gluon-quark pairs with larger values of z 
for the quarks and a smaller one for the gluon. Moreover the gluon conversion processes 
in q - 0 pairs are expected to be reduced. 

In statistical mechanics all these effects are simply included by multiplying the 
amplitudes modulus squared of the relevant processes by the factors 1 - f or I+ f for 
each Fermi or Bose particle in the final state, with f denoting the particle distribution 
functions without any level-density factor. In equilibrium conditions these f reach the 
standard stationary Fermi-Dirac or Bose-Einstein form, while in general they depend 
on time. Thus, it is reasonable to expect that similar factors should be introduced in 
the A-P equations. 

To go further on this point we will show, as already mentioned, that A-P evolu- 
tion equations can be formally viewed as Boltzmann transport equations for parton 
distributions when they satisfy classical statistics (dilute system). 

As well-known, the Boltzmann set of equations describes the evolution to equilib- 
rium states of systems composed by many particles of several species (i specie-index 
i = 1, .., n) mutually interacting [IO]. Assuming, for the following applications, monodi- 
mensional dynamics for particles we can define the numerical distribution functions as 

%(E, t) E .9i(t).fi(E,t) 1 (7) 

with E denoting the energy, f;(e,t) the statistical functions (they recover the usual 
Bose/Einstein or Fermi/Dirac at the thermal equilibrium), and gi(e) the level-densities 
(weights) corresponding to E. These last quantities should be fixed from the beginning, 
by studying the hamiltonian of the total system. From (7) follows the expression for 
the total number of i-particles 

By using Eq. (7), the Boltzmann equations can be cast in the following form 

L n; = CJf,g] = c:[f,g] - CJf,g] i = 1, . . . . . n , (9) 
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where f s (fi, . . . . fn), g s (gi, . . . . gn), L: is the Liouville operator, and Ci[f, g] is the so 
called collisional integral for the i-th particle specie. The latter is given by a thermal 
average of all possible processes which change the density of the i-th specie. Notice that 
in Eq. (9) we have defined C+[f, g] and C;[f, g] as the contributions corresponding to 
the interaction processes which create or destroy the i-th particle specie respectively. 
For simple three body processes A -+ B + C, B -+ A + C, if we are interested in 
describing the modification of B population, the corresponding terms in Ca[f,g] are 
the following 

c,+[f,g]- c;[f,g] = 2~ //dc, dfc {IM(A + B+c)~ ~(6, - eB -cc) 

x nA(tA,t) gdEB) I1 * fB(5B,t)l gdEC) I1 * fdFC? t,l} 

-2n JJdcA dcc {IM(B -+ A+C)l* a(~, -F,, -cc) 

x %7(~B,t) gA(tA) [If fA(cA,t)] dEC) [l f fC(EC,t)]} 

(10) 

where f = (fA(~A,t),fo(EB,t)rfC(CCrt))r g = (gA(EA),go(EB),gC(~C)), PI2 are the 

squared moduli of transition amplitudes and the sign in the final state factors is pos- 
itive/negative depending on the bosonic/fermionic nature of particles. In the limit of 
very small f; one has (1 f f;) N 1, and assuming free particle states (gi = const) the 
collisional term for very dilute systems is recovered. 

Assuming nf different flavours for quarks (j = 1, . . . . n,) with elicity states (X = 
+, -), we can rewrite the set of equations (4) for polarized quarks (qjx), antiquarks 
(qj,~), and not-polarized gluons (G) distribution functions in terms of two-dimensional 
integrals 

$jA(Z, T) = JJ o1 o’ Wz 6(x - ~2) P,,(~)qj~(y, T) + $=&)G(Y> 711 1 (11) 

-$7&,7) = l JJ ’ dYdz 6(x - Yz) [Pqq(z)rTjA(Y, T) + ~P~c(z)G(Y, T)I 1 (12) 

-&c 7), = j’ i’ &dz 6(” - ~2) { PGC(~)G(Y, r) 

+ $5 C pG7(z)[qjA(Y,T) + cf,A(Y,T)]} 
j=l A=+,- 

(13) 

We have assumed for polarized gluon distributions that G+(r, 7) N G-(X, r) - G(z, 7)/Z: 
we will comment on this point later. Note that in the previous expressions the 
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integrating-variables y and 2 vary from 0 to 1, i.e. to the maximum available en- 
ergy properly normalized. Starting from the first of above equations, Eq. (ll), we 
notice that if we formally regard T as a time parameter, r.h.s. of (11) represents 
the CG collisional term of a Boltzmann equation, written for particles obeying to a 
monodimensional dynamics. This equation is given in terms of numerical distribu- 
tion functions qjx(Z, T), G(z, 7) and of the probabilities for the elementary processes 
Pqp(z) and P,c(z) (the final particles are assumed to be free which means no presence 
of extra-g terms corresponding to them). It is worth-while pointing out that in the 
infinite-momentum frame, where the parton picture is well-defined, all transverse dy- 
namics can be safely neglected (it has been already integrated out, indeed) and thus 
the description is monodimensional. The &function in (11) is just the longitudinal 
momentum conservation in the three body interaction process. 
However, to complete the analogy between (11) and the corresponding Boltzmann 
equation we still have the difficulty that no C,< terms are included in (11): these cor- 
respond to decays of the z-momentum quark in parton pairs and would only depend 
on qj~(~, r) if all statistical factors for final states are neglected. The splitting func- 
tions involved in this case are two: Pp,(z) and PG~(z), being respectively, the emission 
probability of a quark or a gluon with fraction y = ZZ. Notice that in C;X terms the 
momentum conservation leads to a definition of .Z which is simply the inverse of the 
one in C,:. Thus, the CJ; collisional integral would be 

CG [q(x> T)>G(x,~)I = qji,x(x, 7)/01 1’ dydz 6 (X - z) [Pgq(z) + PG,(z)] , (14) 

with q = (41 +, .., qnr+, qi-, .., q,,,-), and by integrating over y we finally get 

CG [q(z, T),G(xc, T)l = qjA\(x, T)/D’ dt 2 [Ppq(z) + PC+(Z)] = 0 , (15) 

where in (15) we have used the integral constraint following from momentum conser- 
vation in quark splitting. Therefore from (15) since the CJ< contribution vanishes, we 
deduce that A-P evolution equation for qjr distribution can be consistently viewed as 
a Boltzmann equation in which all statistical factors corresponding to final particle are 
neglected (dilute system). Similar considerations can be repeated for the antiquarks 
evolution equations (12). 

A completely analogous result also holds for gluon distribution, whose evolution 
is dictated by (13). In this case, by writing the corresponding Boltzmann inspired 
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equation, one gets 

$-G(r. 7) = l1 l1 dy d; 6(~ - 1/z){ Pcc(z)G(~, ~1 + 2 c &q(z) 
j=l A=+.- 

x [q&, T) + qjx(y,r)]} - G(z, T) /o’ /o’ &/ dz 6 (z - f) [PGc(z) + 2nd’dz)1 

=~‘~{p~~(f)G(..r)+~~~-P~~(~)[qji(~~~)+y,,(ii,r)]}, (16) 

which is just the A-P equation for gluon distributions. The C; term still vanishes due 
to the momentum conservation constraint 

I 

1 
dz z[P~c(z) + 2n,PqG(i)] = 0 

0 
07) 

Let us briefly summarize our results till this point: we have shown that A-P evolution 
equations can be formally regarded as a set of Boltzmann equations for parton distri- 
bution functions, in which the Liouville operator takes the simple form of derivative 
with respect to r scaling variable. It is worth to notice that the absence of any external 
force in the regime of high transferred Q2 is of course compatible with this expression 
for fZ. The analogy holds under the hypothesis that quarks and gluons form a very 
dilute system in the nucleons, so the statistical factors for final particles in the inter- 
action processes can be neglected. Starting from this equivalence and urged from the 
idea that, instead, quantum statistics would play a role in parton dynamics, it is now 
easy to generalize A-P equations to a set of generalized scaling equations where Pauli 
exclusion principle and gluon stimulated emission processes can be taken into account 
in a simple way. 

To this aim, as in equation (lo), one should introduce in the collisional integrals 
the (1 f fi) factors, and thus, as long as the statistical effects are taken into account, 
the factorization of Q~X, QUA and G as reported in Eq. (7) becomes necessary. 
In the same spirit of (7), we will write the quark, antiquark and gluon distributions as 

qjA(z.,r) = SjA,(z) fiCxt T, ) (18) 

QjX(xt T, = GjA(2) &+(x77) 2 (19) 

G(z,r) = St(x) fG(V) > (20) 

where gjA(S), gjA\(X) and gG(z) are weight functions, whereas fi(z,r), $(z,r) and 
f~(zr, r) are purely statistical distributions. The explicit form for g-functions, which 
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contains the infrared divergency at :c = 0, should be fitted from experimental data, as 
in (81, or deduced from theoretical expected behaviour, like, for example, Regge theory. 
We stress that the factorized form (18)-(20), in particular the hypothesis that the 
singular functions gjA, OjA and gc do not depend on 7 is compatible with predictions of 
both Regge theory and QCD for the behaviour of parton distributions at the end-point 
r = 0; as well-known in this regime one has 

PA(~, Q*) + FA(&‘%-~~ , (21) 

with C?A which does not depend on Qs, at least for large Q2 [ll]. 
Remarkably, a parameterization similar to (18)-(20) has been already successfully pro- 
posed on phenomenological basis in [E], to fit all the available measurements on parton 
distributions at fixed Q2, assuming for them a thermal-equilibrium form 

qjx(Z) = A Z-~ [exp (“-CA) +11-i , 

gjA(Z) = A Ya [exp(X-2’)+l]-’ , 

G(r) = ; A .T-” [exp (7) -11-l , 

(22) 

(23) 

where XjA, 5jA, and ZG represent the thermodynamical potentink, and 5 plays the 
role of the temperature. It is worth-while to point out that, in the framework of 
a formal connection between the A-P evolution equations and Boltzmann equations, 
these results [S] are a straight consequence of the above analogy, which predicts thermal- 
equilibrium-like solutions for parton distribution functions for sufficiently high values 
of Q2. 

Within the factorized expression (18)-(20) the final state factors are written in the 
form 1 - f,!, 1 - f: and 1 + fG for quarks, antiquarks and gluons respectively. 

We are now able to introduce a set of generalized scaling equations for quarks and 
gluons. Here we will consider for simplicity the case in which the gluons are supposed 
to not have a significant net polarization in the nucleons with respect to the one carried 
by quarks. We will assume, therefore G+(I, r) N G-(s;T) N G(I, r)/2. It should be 
pointed out that this approximation is consistent with the results obtained in [5] and 
[E], where it is argued that still Pauli principle plays an essential role to generate the 
polarization of the quark sea, in the same approach therefore adopted here. 
It is, instead, less satisfactory in the framework of the different interpretation of the 
violation of Ellis-Jaffe sum rule based on the axial-vector current anomaly [12]. This 
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latter case, in fact. would require a very large gluon polarization, i.e. LIG = G+ -G- N 
3 + 4. Notice however that, as shown in [E], gluons are expected to be more numerous 
than quarks, due to their Bose nature, so in any case one has LIG/G << Aq/q, which 
supports our approximation. 

By helicity conservation at the quark-gluon vertex, it is easily seen that evolution 
equations for polarized quark distribution functions get the following form 

+ &G(z) G (;J) [l -f;(v)] [l - f;” (x (; - 1) 7)]} 

- qjA(~,~)/O1~dz{Pqq(z) [l-.f;\(xz,~.)] [l+~f~(~(l-z)~~)] 

+ pG,(z) [l + ;f,bf, T)] [l - f; cz (1 - z), T,]} (25) 

The equations for antiquarks are easily obtained by the previous one by substituting 
qjA ++ qjA and f;” +, $. %nilarly for the gluon distribution G(z, r) one has 

$G(z,T) = ~l$(P~~(~) +) [l+$$v)] [l+&+(++)] 

+ fJ 1 PG~(z) [l+i.f~Cx>~)] (%A(t)T) [l-f~('(~-l)~r)] 
j=l A=+,- 

+ qjA(:,T) [l-~(~(~-l),~)]}} 

- G(x, 7) /ol 2 dz ( PGG(Z) [ 1 + ;fG(I%, T)] [1+ &G (5 (1 - 2) 1 r)] 

+ g c P&(Z) {[l-fjQ*,r)] [l-f;A(x(l-&r)] 
j=LA=+,- 

+ [l-fi(xcz,r)] [l-f,~A(r(l-z),r)]}} (26) 

Several comments can be made on the-above expressions. First of all we notice that 
the inverse decay processes, the ones contained in the C; collisional integral, contribute 
to the scaling behaviour of parton distribution functions with terms quadratic in the 
pA(z,r) at least. This is a consequence of our interpretation of A-P equations as 
transport equations. As already shown these terms vanish in the limit of a very dilute 
system. 
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The generalized equations predict also a different, more complicated, evolution for 
momenta. By taking Mellin transform of both sides of (25) and (26), in fact, one sees 
that the standard scaling behaviour should be corrected by terms quadratic and cubic 
in distribution functions, which are not simply products of momenta of quarks and 
gluon densities. 

Finally, as for the standard A-P equations, the scaling behaviour for unpolarized 
quark distributions can be obtained by simply considering the sum qj(Z:, r) = 4j+(I, r)+ 
9,-(x, r) (the same holds for antiquarks). Notice, however, that since the introduction 
of final state statistical factors spoils the linearity of the equations, the evolution of 
qj(z,T) will depend on both the polarized distribution functions and not simply on 
their sum. 

We are now at some concluding remarks. We have stressed the point that, as 
some experimental results suggest, the Fermi or Bose nature of partons could sensibly 
manifest itself in observable quantities in deep inelastic scattering on nucleons. This 
idea already successfully applied in [5] and [E] mostly motivates our paper. In particular 
it seems to us quite natural that quantum statistics may modify the scaling behaviour 
of parton distribution functions for rather small x and high Q2; in this region the sea 
becomes dominant and thus bremsstrahlung processes, responsible at leading-log level 
for scaling breaking, are likely supposed to occur in presence of a gas of partons. In 
this case Pauli blocking and gluon stimulated emission play, in general, a sensible role 
in parton distribution evolution. 

We have introduced both this statistical effects obtaining the generalized scaling, 
starting from the observation that a quite close and intriguing analogy seems to hold 
between A-P equations and a set of Boltzmann transport equations for partons. In 
our approach to nucleons as statistical systems, this fact is of course welcome and 
expected. Pursuing this formal analogy it seems to us very fascinating the fact that 
the scale variable QZ can be interpreted in some sense as a time parameter. The 
physical significance of this point, if any, should be deeper understood. It is also rather 
interesting to stress that, from this point of view, one would naturally expect, in the 
spirit of Boltzmann H theorem, that the normalized parton distributions fjA(z,7), 

fjA(x,T) and fc(s,r) should approach stationary Fermi and Bose expressions as Q2 
increases. Remarkably, these conclusions seem to agree with the phenomenological 
results obtained in [El. 

We are much indebted with Prof. France Buccella, which we are pleased to thank 
for indefatigably encouraging this work and for his valuable comments. We would like 
also to thank Prof. E. W. Kolb. Dr. V. A. Bedniakov and Dr. S. G. Kovalenko for 

10 



useful discussions. This work was supported in part by the DOE and by the NASA 
(NAGW-2381) at Fermilab. 

11 



References 

[l] P. Amaudruz et al. (New Muon Collaboration), Phys. Rev. Lett. 66 (1991), 
2712; 

D. Allasia et al., Phys. Lett. B249 (1990), 366. 

[2] G. Preparata, P. Ratcliffe and J.Soffer, Phys. Rev. Lett. 66 (1991), 687. 

[3] K. Gottfried, Phys. Rev. Lett. 18 (1967), 1174. 

[4] R. D. Field and R. P. Feynman, Phys. Rev. D15 (1977), 259. 

[5] F. Buccella and J. Soffer, Mod. Phys. Lett. A8 (1993), 225; Europh. Lett., 24 
(1993), 165; 

F. Buccella and J. Soffer, to appear in Phys. Rev. D. 

[6] J. Ellis and R. L. Jaffe, Phys. Rev. D9 (1974), 1444. 

[7] J. Ashman et al. (European Muon Collaboration), Phys. Lett. B206 (1988), 
364; Nucl. Phys. B328 (1989), 1. 

[E] C. Bourrely, F. Buccella, G. Miele, G. Migliore, J. Soffer and V. Tibullo, 

CPT-93/P.2961, submitted to Zeit. Phys. C. 

[9] G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977), 298. 

V. N. Gribov and L. N. Lipatov. Sov. Jour. Nucl. Phys. 15 (1972) 438, 675. 

L. N. Lipatov, Sov. Jour. Nucl. Phys. 20 (1975) 94. 

Y. L. Dokshitzer, Sov. Phys. JETP 46 (1977), 641. 

[lo] See, for example: 

R. C. Tolman, The Principles of Statistical Mechanics (1938), Oxford Univer- 
sity Press. 

[l l] F. J. Yndurain, The Theory of Quark and Glum Interactions (1993), Springer 
Verlag. 

12 



[12] A. V. Efremov and 0. V. Teryaev, Preprint JINR-EL-%-287 (unpublished); 

G. Altarelli and G. G. Ross, Phys. Lett. B212 (1988), 391; 

R. Carlitz, J. C. Collins and A. H. Mueller, Phys. Lett. 214 (1988), 229. 

13 




